
vSGX: Virtualizing SGX Enclaves on AMD SEV
Shixuan Zhao∗, Mengyuan Li∗, Yinqian Zhang†‡�, Zhiqiang Lin∗�

∗Department of Computer Science and Engineering, The Ohio State University
†Research Institute of Trust-worthy Autonomous Systems, Southern University of Science and Technology
‡Department of Computer Science and Engineering, Southern University of Science and Technology

Abstract—The growing need of trusted execution environment
(TEE) has boomed the development of hardware enclaves.
However, current TEEs and their applications are tightly bound
to the hardware implementation, hindering their compatibility
across different platforms. This paper presents vSGX, a novel
system to virtualize the execution of an Intel SGX enclave atop
AMD SEV. The key idea is to interpose the execution of enclave
instructions transparently to support the SGX ISA extensions,
consolidate encrypted virtual memory of separated SEV virtual
machines to create a single virtualized SGX-like address space,
and provide attestations for the authenticity of the TEE and
the integrity of enclave software with a trust chain rooted in
the SEV hardware. By design, vSGX achieves a comparable
level of security guarantees on SEV as that on Intel SGX. We
have implemented vSGX and demonstrated it imposes reasonable
performance overhead for SGX enclave execution.

I. INTRODUCTION

Over the past few years, we have witnessed a tremendous
growth of the use of trusted execution environments (TEEs),
such as Intel Software Guard Execution (SGX) and AMD Se-
cure Encrypted Virtualization (SEV). TEEs have great promise
in protecting both confidentiality and integrity of program
code and data from malicious system software and operators,
which are extremely valuable for clouds where the computing
platform is not fully trusted by its customers. Existing cloud
deployment of TEEs includes Alibaba Cloud’s SGX VM
instances [7], Microsoft Azure’s confidential computing [3],
Google’s confidential virtual machines [4], and so on.

As a prominent TEE platform from Intel, a dominating
player in the general-purpose CPU market, SGX has once
become the de facto standard for building TEE-based appli-
cations. A rich ecosystem with abundant open source projects
and commercial products has been built atop SGX, including
SGX-based password manager [40], SGX-based anonymity
network [38], privacy-preserving data analytics (e.g., [57],
[60]) and machine learning (e.g., [41], [50]), SGX-based game
protection (e.g., [16], [54]), privacy-preserving contact-tracing
(e.g., SafeTrace [1]) and blockchains [19] using SGX, and
SGX-based IoT network [48], etc.

However, the ISA extension of SGX mandates a clear
separation of software applications into trusted and untrusted
components, such that the trusted software components are

†Part of this work was done when Shixuan Zhao was visiting SUSTech.
� yinqianz@acm.org, zlin@cse.ohio-state.edu

isolated inside the protected enclave regions that are only
accessible from code executed in a new CPU mode (i.e., en-
clave mode). As such, developers need to refactor an existing
application or build a new one in accordance with Intel’s SGX
software specification, and compile it using SGX SDKs, such
as Intel SGX SDK [34], and Rust SGX SDKs (e.g., [25], [69]).
As a result, applications developed for SGX can only run on
SGX processors, resulting in a vendor lock-in situation.

Decoupling TEE software applications from the underlying
TEE hardware is a strong desire of the cloud providers. For
instance, Google’s Asylo project [8] aims to provide a unified
SDK interface so that the same TEE source code developed
with Asylo can be compiled and run on any TEE hardware;
Amazon’s Nitro Enclaves [5] use virtualization technology to
form secure enclaves, so that confidential workloads can run
without SGX. However, neither of these methods can achieve
binary compatibility. Ideally, the cloud providers would offer
their customers an option to build their applications once, in
accordance with the SGX semantics, for instance, given the
large volume of existing SGX-based projects, and deploy them
on a variety of cloud servers, which may or may not have the
hardware capabilities of SGX.

Moreover, the customers should be provided the freedom of
choosing the level of trust they have on the cloud providers.
For instance, for users who fully trust the cloud providers,
hypervisor-based enclaves (e.g., Nitro Enclaves [5]) can be
used. But for other users who do not, either SGX or SEV can
be chosen from two different levels of trust: SGX features
small user-space enclaves with all other software components
exposed to the untrusted hypervisor, while SEV protects the
entire VM and allows flexible deployment of existing applica-
tions, at the cost of a larger attack surface. However, to the best
of our knowledge, there is no technique that could combine the
benefit of both SGX and SEV so that a user can enjoy SEV-
protected VMs for a private computation environment while
still be able to run existing SGX enclave binaries.

To demonstrate such a feasibility and practicality, in this
paper, we present vSGX, a system that provides binary code
compatibility of partitioned SGX enclave software and enables
its direct execution atop AMD SEV. Conceptually, vSGX can
be considered as an SGX hardware module that is plugged
into an SEV machine. The key idea behind vSGX is to
leverage the VM protection provided by SEV, and execute
trusted enclave of a legacy SGX application in a separated

VM, and we call it an enclave VM (EVM). We call the
original VM that runs the untrusted part of the app as an
app VM (AVM). The virtualization is achieved through the
interposition of the SGX instructions (e.g., EENTER, and
EEXIT) during their executions in the corresponding VMs
or cross-VMs, and implementing the corresponding logic in
the VM kernels to offer the transparency to both the trusted
enclave code and untrusted application code. The enclave
code and data secrecy are achieved by using AMD’s memory
encryption engine (MEE), and the integrity is achieved by
building an attestation service with a trust chain rooted by
AMD’s SEV attestation. Therefore, we achieve a comparable
level of security as SGX while preserving the SEV’s security
when running SGX applications atop vSGX.

While the idea of virtualizing SGX enclaves using SEV
might appear to be simple, it in fact faces many non-trivial
challenges (§III). These challenges include how to interpose
the execution of enclave instructions in AMD SEV; how to
handle enclave entrance and exit since with vSGX an enclave
is executed in a separate EVM; how to handle cross memory
access between the EVMs and AVMs; how to deal with the
untrusted code in the AVM’s OS or even a malicious hypervi-
sor; and how to perform SGX remote attestation on AMD
machines. We have fortunately addressed these challenges
when designing vSGX (§IV).

We have analyzed the security of vSGX and discussed that
our design has achieved a comparable level of security as with
Intel SGX, through the use of the primitives provided by AMD
SEV (§V). We have also evaluated its performance overhead
with a set of benchmarks and real world applications (§VI).
Our experimental results from the benchmarks show that
while many of the enclave instruction executions (particularly
EENTER and EEXIT) are indeed slower when running in
SEV compared to running in Intel CPU, these overheads will
only be observed by ECall or I/O intensive applications. Our
evaluation with real world SGX applications shows that the
overhead of vSGX is reasonable. Therefore, we believe vSGX
represents a practical way of executing SGX enclaves atop
AMD SEV.

In short, this paper makes the following contributions:

• Novel System: We present vSGX, a new system that
allows the SGX execution atop AMD SEV (including
SEV-ES), enhancing enclave applications’ inter-TEE op-
erability in a virtualized environment.

• Comparable Security: Despite the fundamental design
differences between SGX and SEV, vSGX achieves com-
parable security guarantees to SGX to allow secure exe-
cution of SGX enclaves, while preserving the benefits of
being protected by SEV.

• Implementation and Evaluation: We have implemented
vSGX, and systematically characterized its performance
overhead. Our results show that it has reasonable over-
head for enclave execution when running on AMD SEV,
and can be used in practice.

II. BACKGROUND

A. Intel SGX

Intel SGX provides a trusted execution environment (TEE)
by isolating the security-critical component of an application
in a hardware-protected enclave. Everything outside the en-
clave including the OS is untrusted. The only trusted com-
puting base (TCB) includes just the underlying hardware and
the enclave itself [32]. In particular, Intel SGX provides the
following promises for software running inside the enclave:
• Confidentiality: The enclave has its memory encrypted,

protected and physically isolated in the Processor Re-
served Memory (PRM), and such memory is called
Enclave Page Cache (EPC). Any software outside the
enclave cannot access the code and data in EPC. In addi-
tion, a hardware memory encryption engine (MEE) sits in
between of the processor and the memory controller, so
that all memory accesses to the PRM region are encrypted
and decrypted on the fly.

• Integrity: When an EPC page is swapped out from the
memory, it is encrypted and authenticated with Message
Authentication Code (MAC). Thus, it prevents direct
tampering from the outside software. An EPC page
can be swapped back once passing the decryption and
integrity check.

Intel also provides various platform support, including
launching service and remote attestation service so that the
enclave and the SGX hardware can authenticate themselves to
a remote party.

B. AMD SEV and Extensions

AMD SEV provides a VM-based TEE by encrypting VM’s
memory without trusting hypervisors or hosts (we will use
hypervisors and hosts interchangeably when referring to
the virtual machine monitor in the rest of this paper) [37].
Particularly, an AES engine in AMD system-on-chip (SOC)
is used to protect VM’s data in the memory. SEV VM’s data
is automatically encrypted by the AES engine when it is
written to the memory and is automatically decrypted when it
is read from the memory. Each SEV VM has a unique 128-bit
VM Encryption Key (VEK), which is stored in AMD Secure
Processor (AMD-SP) and never exposed to the platform host.
SEV-ES further protects the VM states by encrypting its VM
control blocks (VMCB) during VMEXITs [36]. The latest
SEV-SNP also includes an inverted page table, such that the
integrity of the encrypted memory and the nested page tables
is preserved [10].

Similar to Intel SGX, everything outside the SEV VM
including co-resident VMs and the platform host is untrusted.
Even though the hypervisor can access SEV VM’s memory,
the AES encryption protects the guest VM’s confidentiality
and integrity from the hypervisor. However, unlike Intel SGX
where the whole enclave is encrypted, SEV supports page-
level encryption and the guest VM can control which pages in
the memory are encrypted. The guest VM can unset the C-bit
in the guest page table entry (PTE) to change an encrypted

2

page to an unencrypted page in order to share data with the
hypervisor. Another promising feature of AMD SEV is that
the SEV VM requires no application software modifications
while some OS kernel modifications are necessary to enable
SEV in both the guest side and host side. The support for
SEV and SEV-ES has been officially patched since Linux
kernel 4.16 and 5.10. A remote attestation framework is also
provided by SEV to protect VM’s integrity and confidentiality
during VM setup.

C. TEE Security

The security of TEEs has been taken under scrutiny since
their debut. It has been shown that SGX is vulnerable to
various side-channel attacks [18], [27], [30], [43], [59], [61],
[74] and more recently speculative execution attacks [20], [22],
[58], [67], [68]. These attacks are common on Intel processors,
and are more severe on SGX, because SGX assumes a stronger
adversary—a malicious OS.

Given a strong security assumption that considers a mali-
cious hypervisor, studies have also shown that SEV is vulnera-
ble to various attacks due to its lack of memory integrity [45],
[71], ECB mode of AES encryption and weak tweak func-
tion [23], [71], unprotected page tables [49], hypervisor-
controlled TLB mechanism [47], unrestricted momentary exe-
cution [44], I/O operations [45], and Cipherleaks [46]. Accord-
ingly, new versions of SEV hardware, including SEV-ES [36]
and SEV-SNP [10], have been released to address these flaws.
It is believed that the latest SEV-SNP could defeat most of
the known attacks against SEV. Additionally, SEV is also
vulnerable to side-channel attacks [45], [49], [70].

D. Virtualization

Virtualization has been a fundamental technology in mod-
ern computing infrastructures, which has enabled modern
computing from multi-tasking (where multiple tasks can be
executed due to the virtualization of memory and CPUs),
to multiple operating systems (where multiple OSes can run
simultaneously due to the virtualization of machines) [15].
Without virtualization, modern cloud computing would have
not been possible. The key to achieve virtualization relies on
the interposition and transparency [55]. With the interposition
of virtual to physical address translation (e.g., page directory
and page tables), OS can virtualize physical memory to
multiple processes. With the interposition of interrupt, page
translation, and VM enter and exit, a hypervisor can virtualize
a physical machine to run multiple virtual machines (VMs)
simultaneously. With transparency, applications or guest OSes
will not feel any discrepancies (with the illusion of occupying
the whole physical resources of a machine) and run as usual.

There are multiple ways to achieve virtualization. One is
through the use of binary translation for the interposition (ear-
lier versions of QEMU fall into this category) [56]. The second
one is through para-virtualization to interpose only important
instructions (in which guest OS is patched first when running
in a VM) [14]. The third one is through interposing hardware
events such as interrupts with complete virtualization [65].

When designing vSGX, we explore this third approach by
interposing the undefined instruction exception handler and
emulating the corresponding instructions with the necessary
hardware support from SEV.

III. SYSTEM OVERVIEW

vSGX is a virtualization mechanism that enables AMD SEV
processors to transparently execute unmodified SGX enclave
binaries with a comparable level of security guarantee while
preserve the protection from SEV. In this section, we provide
an overview of vSGX, by first describing our design goals
(§III-A), followed by our key approach (§III-B) and challenges
(§III-C), and finally the threat model (§III-D).

A. Design Goals

There are three main goals when designing vSGX:
• G1: App binary compatibility. Orthogonal to LibOS or

container approaches where legacy applications can be
executed, vSGX aims to run unmodified SGX application
binaries on AMD SEV machines without any modifications
from enclave programmers.

• G2: SGX-compatible security for enclaves. vSGX must
achieve a comparable level of security as Intel SGX, such
that software running inside a vSGX enclave is protected
from any software component outside the enclave, includ-
ing the hypervisor, the OS, and other enclaves.

• G3: SEV-preserved security for applications. vSGX must
not compromise or weaken the security provided by AMD
SEV for an application, such that applications adopting
vSGX are protected from attacks from a malicious or
compromised hypervisor.

B. Key Approach

Unlike SGX, which provides isolated and encrypted mem-
ory regions within the address space of an application, the
security boundary enforced by SEV is the physical memory
of an entire VM. Intra-VM isolation is not provided by SEV
hardware. As such, to protect enclave code and data from
the untrusted application code, the only secure and viable
approach is to run the enclave in a separate SEV VM from the
application, and properly handle their instruction execution
and communications.

More specifically, in vSGX, the VM, in which the applica-
tion runs, is called an app VM (AVM) and the VM where the
enclave runs is called an enclave VM (EVM). To enforce cross-
enclave isolation, only one enclave is allowed to occupy an
EVM and an EVM is never reused. With SEV’s VM isolation
and memory encryption, the application and the hypervisor are
not able to access the enclave memory and different enclaves
are isolated so they cannot access the memory of each other.
To transparently support the enclave binary and the application
that are originally built for Intel SGX processors, the hyper-
visor must provide cross-VM communication mechanisms to
help the emulation of the Intel SGX instructions, inter-domain
memory accesses, exception handling, and so on.

3

C. Challenges

Under this multi-VM execution model, to satisfy our design
goals, the following technical challenges must be addressed:
• C1: Instruction emulation: Although both Intel and AMD

machines are x86-64 instruction set architecture (ISA), the
SGX extension of the x86-64 ISA is Intel specific and
not supported by AMD machines. These extended SGX
instructions must be intercepted and emulated by vSGX.
• C2: Memory management: SGX embeds the enclave

memory inside the application’s address space and allows
the enclave code to access memory both inside and outside
the enclave, while prohibiting accesses to the enclave
memory from outside (including another enclave). With
the multi-VM execution model, vSGX must still satisfy
the same requirement.
• C3: Enclave entrance and exit: The semantic of SGX’s

enclave entrance (i.e., EENTER) and exit (i.e., EEXIT),
namely the world change between untrusted space to
trusted space and vice versa, must be preserved in vSGX.
The control flow of the enclave code must be preserved
as in SGX.
• C4: Multiple enclaves and multi-threading: vSGX must

be able to concurrently run multiple enclaves (such as the
Quoting enclave as in SGX, in addition to application en-
claves). Each enclave should also support multi-threading.
• C5: Remote attestation: SGX provides a measured

launch mechanism for enclave binaries and allows the user
to perform remote attestation to verify the authenticity of
the SGX platform and the integrity of the enclave’s initial
code and data. Therefore, vSGX must provide similar
functionalities to help the enclave users to establish trust
with the vSGX platform and the enclave code. However,
by default, SEV only provides attestation for a VM’s
image. This requires the establishment of a new chain of
trust that is anchored at SEV’s root of trust.

D. Threat Model

vSGX considers two attack scenarios. Security threats in
both scenarios have to be considered. First, with regard to the
security of software inside enclaves, vSGX follows the same
threat model as SGX and does not trust any software outside
the enclave. We assume the adversary may take control
of the entire AVM, such as the management of enclave
thread scheduling, the virtual memory, and I/O operations.
We also assume the adversary is able to launch an enclave
that executes any code of his choice. Moreover, we assume
the adversary may compromise the hypervisor as well. The
collusion among the hypervisor, the AVM, and a malicious
enclave (as well as its EVM) represents a worst case scenario
in the settings of vSGX.

Second, the security of an application inside the AVM must
be preserved with respect to the threat model of SEV, where
software inside the AVM is trusted but the hypervisor is not.
This must hold even when the application uses vSGX to run
an enclave. It requires that vSGX does not increase the attack

EVM

Hypervisor

KVM Module

vSGX Hub

Enclave Kernel
Instruction
Emulation
(§IV.A)

Memory
Management

(§IV.C)

Cross-VM
Communication (§IV.D)

TCB Untrusted

(§IV.D)

AVM

App

AMD SEV HardwareRoot of Trust (§IV.E)

Enclave
Manager Enclave

App VM Module
Instruction
Emulation
(§IV.A)

Memory
Management

(§IV.C)

Cross-VM
Communication (§IV.D)

(§IV.B)

Fig. 1: The vSGX architecture.

surface of SEV. In this setting, vSGX allows the adversary to
manage the hypervisor, including the vCPU scheduling, the
nested page tables, the interrupt/exception handling, the I/O
management, and so on. Nevertheless, vSGX assumes that
the variant of SEV it runs on is secure. Notwithstanding the
demonstrated attacks against SEV [23], [45], [45], [46], [49],
[49], [70], [71], we assume that on SEV-SNP or its successors
the integrity and confidentiality of the AVM can be protected
from malicious hypervisors.

Out of scope in our threat model are side-channel attacks
and powerful physical attacks. While weaker-forms of physical
attacks such as DRAM interface snooping [42] and DRAM
cold-boot attacks [31] can be thwarted by SEV’s on-chip
memory encryption engine, powerful attacks such as DDR
bus manipulation are not guarded by SEV [37] and thus
cannot be prevented by vSGX. We assume transient execution
attacks [39] are prevented by hardware countermeasures [6]
and pattern-based cache and memory side-channel attacks are
mitigated via software hardening.

IV. DETAILED DESIGN

The architecture of vSGX is illustrated in Figure 1. There
are five components inside vSGX: (1) Instruction Emulation
(§IV-A), (2) Enclave Manager (§IV-B), (3) Memory Man-
agement (§IV-C), (4) Cross-VM Communication (§IV-D), (5)
Remote Attestation (§IV-E). In this section, we present the
detailed design of these components.

A. Instruction Emulation

To address challenge C1, vSGX hooks the handler for
Invalid Opcode trap (a.k.a., the #UD trap) in the kernels of
both the AVM and the EVM, so that SGX instructions can
be emulated by vSGX. If the invalid opcode corresponds to
one of the ENCLS or ENCLU instructions, the corresponding
functionalities are emulated in the kernel and the relevant
registers are modified to reflect the results of execution in

4

EVM AVM

EENTER
Handler

Manager

❷ EENTER Req.

③ EENTER Response

④ Wait for
EEXIT

❶ EENTER

❺
EEXIT

⑥ New thread
terminates

❻ EEXIT Req.

❼ EEXIT Handled

❸

❹❶
Fault

❸ Send
AEX Req.

Fault
Handler

❺ Go to AEP

❹

❻ ERESUME

② Wait for
ERESUME

❼ ERESUME Req.

⑧ ERESUME
Response

ERESUME
Handler❽ ERESUME Handled

❾
Return

❷

AEX Handler

Trap Handler

New Thread

App

Trap Handler

Fig. 2: Entrance and exit of an enclave

the corresponding VMs. vSGX’s support of SGX instruction
emulation is listed in Table I.
• The emulation of ENCLS instructions are performed across

the boundary between the AVM and the EVM. The pa-
rameters of an ENCLS instruction, together with necessary
data (as in the case of EADD), are packed into a request
package, which is sent to the target EVM for execution.
On the EVM side, when the emulated instruction finishes,
the result is sent back to the AVM as a response, which
typically contains an error code and data to be updated
in certain registers. One exception is EWB, which encrypts
an enclave page and writes it back to untrusted memory.
vSGX handles it by packing the encrypted enclave page and
its metadata in the response package. To reduce overhead,
when EWB fails, the response does not contain the page
payload and the metadata.
• The emulation of most ENCLU instructions, such as
EREPORT and EGETKEY, can be handled inside the EVM
in accordance with the hardware specification, However,
the emulation of EENTER, EEXIT, and ERESUME involves
control flow transfers across the boundary of the two VMs.
The AVM and EVM are instrumented such that only one
cross-VM instruction can be executed at a time.

The semantics enclave entrance and exit (per challenge C3)
are preserved via cross-VM execution (shown in Figure 2).
Specifically, the workflow of EENTER is illustrated with black
arrows in Figure 2. The #UD trap handler at the AVM
intercepts the EENTER instruction (Step ¶), prepares for the
corresponding parameters, passes the execution flow to the
enclave thread in the EVM (Step ·). The app thread at the
AVM is then paused, waiting for the corresponding EEXIT
(Step Ã). The execution will be resumed when receiving
EEXIT (Step ¼). Upon receiving the EENTER request (Step
¸), the EVM will create a thread or pick up an existing
one to handle it (Step ¹). When an EEXIT instruction is
executed (Step º), the #UD Trap Handler will intercept it,
pass the execution flow back to AVM (Step »), and terminate
the execution thread if necessary (Step Å). Steps that can
be executed in parallel are labelled with the same index and
differentiated with solid and hollow circles in Figure 2.

In Intel SGX, Asynchronous Enclave eXits (AEX) are
triggered by interrupts or faults. In vSGX, AEX is supported
by vSGX only for faults. Hardware interrupts in the EVM
are handled by the trusted enclave kernel without causing
AEXs. As illustrated with blue arrows in Figure 2, the trap
handlers are hooked to examine if a fault is triggered by an
enclave thread (Step ¶). If so, the handler will call the AEX
handler (Step ·) and then put the current thread to sleep,
similar to what happens with an EENTER on the AVM side
so that vSGX does not need to use XSAVE to save the state
of the enclave like Intel SGX. The AEX handler will follow
Intel’s AEX semantic and generate a synthetic register state
then send it to the AVM (Step ¸). The AVM’s app thread is
then waken up to call the corresponding fault handler with
the synthetic state, right inside the #UD trap context of the
previous EENTER (Step ¹). When the fault handling is done,
either the application is crashed or the fault is handled properly
and the control flow goes to the Asynchronous Exit Pointer
(AEP), which is specified when executing EENTER by the app
[32] (Step º), which executes ERESUME (Step ») to resume
the execution of the EVM (Step ¾).

B. Enclave Manager

An enclave manager is a user-space wrapper process created
inside the EVM for hosting enclaves. An enclave binary is
loaded as a shared library in a user-space process. When an
EVM is launched, an enclave manager is created and then
paused to wait to serve enclave creation. Since only one
enclave is allowed in an EVM, an enclave manager hosts
exactly one enclave (as shown in Figure 1).

Specifically, an enclave manager’s workflow starts by cre-
ating a new address space (i.e., the enclave context) dedicated
for enclave execution that is separated and isolated from
its own address space (i.e., the manager context). It then
configures two threads: the memory syncing thread (§IV-C)
and the dispatcher thread (§IV-D), that run their actions by
trapping into the kernel code and then entering the enclave’s
context. Next, it registers itself to the kernel as a free enclave
manager to wait for ECREATE or ELDB/ELDU that creates
a new enclave. After an enclave is properly initialized, the
manager’s main thread then waits for EENTER requests. When
an EENTER arrives, it uses pthread to create a new thread
for executing the enclave code. The new thread is labelled
as an enclave thread by a flag in its task_struct in the
enclave kernel. Only when the thread is properly setup and out
of the control of the manager thread will we swap its context
to the enclave context.

To follow SGX’s semantics of not allowing an enclave
to access any system services by disabling instructions like
SYSCALL, vSGX alters the enclave kernel interfaces so that no
syscall or software interrupt is available to the enclave thread.
The enclave context also does not have vsyscalls mapped.
Interrupts will force a thread to be switched back to the
manager context, instead of being handled the enclave context.

5

Leaf
Instruction

Instruction Descriptions Support
New

Enclave
EPCM

Modification
Add

EPC Page
Remove

EPC Page
VM Transmission

EVM - AVM
Req. Pkg.

Size
Rsp. Pkg.

Size

E
N
C
L
S

EADD Add an page to an uninitialized enclave X 7 X X 7 l ← © 4185 19
EAUG Add an page to an initialized enclave X 7 X X 7 l ← © 25 19
EBLOCK Block an EPC page X 7 X 7 7 l ← © 9 19
ECREATE Create a SECS page in EPC X X X X 7 l ← © 4105 19
EDBGRD Read from a debug enclave 7 - - - - - - -
EDBGWR Write to a debug enclave 7 - - - - - - -
EEXTEND Extend uninitialized enclave’s measurement X 7 7 7 7 l ← © 9 19
EINIT Initialize an enclave X 7 7 7 7 l ← © 2137 19
ELDB/ELDU Load a page to enclave X P** X X 7 l ← © 8370 4131
EMODPR Restrict an EPC page’s permission X 7 X 7 7 l ← © 12 19
EMODT Change an EPC page’s type X 7 X 7 7 l ← © 12 19
EPA Add version array X 7 X X 7 l ← © 9 4131
EREMOVE Remove a page from EPC X 7 X 7 X l ← © 9 19
ETRACK Block until EBLOCK is done X - - - - - - -
EWB Write an EPC page to main memory X 7 X 7 X l ← © 4137 8355

E
N
C
L
U

EACCEPT Accept changes to an EPC page X - X 7 7 } - - -
EACCEPTCOPY Copy a page to a new EPC page X - X 7 7 } - - -
EENTER Enter an enclave X - 7 7 7 l ← © 177 19
EEXIT Exit an enclave X - 7 7 7 } → l 153 -
EGETKEY Derive a key X - 7 7 7 } - - -
EMODPE Extend permission of an EPC page X - X 7 7 } - - -
EREPORT Create a cryptographic report X - 7 7 7 } - - -
ERESUME Resume an enclave X - 7 7 7 l ← © 33 19

Behavior
AEX Exit an enclave due to interrupt or fault X* - 7 7 7 } → l 166 -

TABLE I: The supported Intel SGX instructions in vSGX: *: Only faults are handled, **: Only when loading a SECS, l: Emulation done
in this VM, }: Callee and emulation in the same VM, ©: Callee in this VM, →: Direction of sending.

...

0x0000000080001000 0xFE20AB0384AA4000 0x00000000921BA000

0x0000000080002000 0xFE20AB0384AA5000 0x00000000921BB000

...

0x00000000800FF000 0xFE20AB0384B04000 0x0000000092200000

0x0000000080100000 0xFE20AB0384B05000 0x0000000092201000

...

EPC
(Both VM)

Virtual
(Both VM)

Physical
(EVM)

ELR
A
N
G
E

Virtual-EPC
Mapping

Enclave app
Page Table

App
Page Table

Access in EVM

Access in AVM

Resolve EPC
address
in EVM

EPCM

Retrive EPCM entry
EPCM.enclave_address

...

0xFE20AB0384AA5000

...

Manager
(EVM)

Fig. 3: Virtual memory architecture of vSGX

C. Memory Management

To address challenge C2, vSGX incorporates the following
components in its design:

(1) Address Spaces: There are four types of address spaces
in vSGX: EPC addresses, virtual addresses, enclave physical
addresses, and manager addresses. The manager address space
is managed by the enclave kernel and the other three address
spaces are used and managed by vSGX. The relationship
between these address spaces are illustrated in Figure 3.
Specifically, the app in the AVM and the enclave in the EVM
share the same virtual address space. EPC addresses are used

as physical addresses in the AVM and used in the EVM as
indices of the Enclave Page Cache Map (EPCM)—the EPC
management structure of SGX. Enclave physical addresses are
the real backing of the enclave memory which are mapped to
virtual addresses in the EVM and used by the CPU to perform
addressing. Since enclave apps can use ENCLU instructions
that consult the EPCM with a virtual address, vSGX uses a
virtual-EPC mapping table inside the enclave to help doing
this. The entry in this table is added or removed when using
ENCLS instructions that add or remove an EPC page.

(2) Software EPCM: Intel SGX leverages EPCM to securely
manage the virtual address mapping and access permission
of a EPC page. To manage EPC pages, vSGX implements a
software EPCM, as illustrated in Figure 3. Each entry of the
EPCM stores the mapping and permission of each EPC page,
just like Intel SGX.

Because the software EPCM is not used by the SEV
processor directly, in vSGX, when an SGX instruction modi-
fies an EPCM entry (listed in Table I), we also change the
corresponding page table entry in the EVM. By doing so,
the EPCM’s restrictions can be reflected in regular memory
accesses. The page table in EVM is isolated from AVM so it
can be trusted.

Some instructions like ECREATE and EPA can add a
page without providing a virtual address. vSGX allocates
these pages in the kernel. ECREATE is enclave specific so
it is allocated within the corresponding EVM. EPA creates a
version array (VA) page shared across enclaves but each entry
of the VA is enclave specific. vSGX creates a VA page for
each enclave and encrypts it with an enclave specific key by
the EVM’s kernel and then stores in the AVM’s kernel.

6

(3) Fetch-and-Map: To allow the code running in the EVM to
access out-of-enclave memory in the AVM, vSGX uses a fetch-
and-map mechanism that hooks the page fault (#PF) handler
of the EVM, from which to fetch the page from the AVM. In
particular, when a page fault happens, our #PF handler sends
a request to the AVM with the virtual address of the faulting
page. If the page is mapped in the AVM, its data is sent back
to the EVM so the #PF handler can map a new page initialized
with the data received to the faulting address of the enclave
execution thread. This process is very similar to the demand-
paging mechanism. The page is mapped as non-executable to
make sure that code outside the enclave cannot be executed
in the enclave mode.

vSGX does not perform fetch-and-map on pages whose
virtual addresses fall into the Enclave Linear Address Range
(ELRANGE). If a page fault happens in ELRANGE, vSGX
will then follow the AEX procedure and inform the AVM to
handle the fault.

(4) Switchless Syncing: As vSGX maps the pages between
the AVM and the EVM, it has to keep the pages synchronized.
Inspired by the concept from switchless OCalls [64], we
designed a similar switchless syncing mechanism using a
background worker thread to synchronize the mapped pages
without switching in and out the enclave.

More specifically, both the EVM and the AVM set up a
thread during initialization, which are called switchless syncing
worker threads. When a fetch-and-map event occurs, the
page’s address and contents are registered into the switchless
syncing list on both sides. The worker monitors and synchro-
nizes the changes of every page in the list periodically (e.g.,
every 100 ms).

Also, to avoid overwriting not-yet-synced changes, we syn-
chronize the page using a 4096-bit bitmap. Each bit of the
bitmap corresponds to one byte of the page; a 1-bit indicates
the corresponding byte is changed; a 0-bit means an unchanged
byte. In this way, this bitmap helps mask out all unchanged
bytes so that only those changed bytes will be synced.

D. Cross-VM Communication

Cross-VM communications are used to serve instruction
emulation and memory syncing. Multiple ways can be used
to achieve such communication (e.g., using an encrypted TCP
connection). However, for better performance, we proposed
to transfer data using cross-VM shared pages. Such com-
munication has to involve the hypervisor, which is untrusted
in our threat model. Therefore, we must design a secure
communication protocol with desired properties.

1) Properties of Cross-VM Communication: The cross-VM
communication in vSGX satisfies the following properties.
• Arbitrary Data Size: vSGX allows arbitrary size of data

by slicing large pieces of data into smaller chunks and
encapsulating them into packets. The size of a packet is the
maximum size of data that can be sent in each round of
communication. The packet has a fixed-size header which
contains the total packet number, the index of the current
packet and the total size of the data. The sender will send

the packets one by one and the receiver will stitch them
together to retrieve the whole data.

• Concurrency: Multiple senders may send data at the same
time. vSGX needs to make sure that they can send data
concurrently without collision. To this end, vSGX includes
a unique sequential session number in each packet header.
For a large piece of data, we consider the stream of these
packets as a single session (e.g., an invocation of an EADD).
On the receiver side, we can stitch the packets of the
corresponding session to rebuild the data.

• Confidentiality: vSGX must make sure that the hypervisor
cannot read the communication data since it is not trusted.
To achieve confidentiality, we rely on end-to-end symmetric
encryption such as AES-GCM 128. vSGX encrypts the
entire packet including the header to make sure no data
is revealed to the hypervisor.

• Integrity: A malicious hypervisor might change the data
during the sending process. We have to ensure that the
data arrives at its destination without being modified. To
achieve integrity, we append a keyed Message Authentica-
tion Code (MAC) to each packet. Without the proper key,
the hypervisor cannot modify the content of a packet.

• Multiple Targets: Because there could be multiple EVMs,
vSGX should be able to send a packet to a specific VM.
We achieve this by assigning an EVM with an EVM ID
(e.g., a natural number indicating the order with which the
EVM registers itself to the hypervisor). vSGX ensures that
the encryption and authentication keys in each EVM are
different, so that even if an EVM is compromised, the
communications of other enclaves remain secure.

• Replay-Prevention: A malicious hypervisor may replay an
outdated but legitimate packet to an EVM. vSGX therefore
has to make sure that all data arriving at the destination is
fresh. This has been addressed by using a unique session
number for each data packet, which is also encrypted and
integrity protected.

• Secure Key Distribution: vSGX assumes shared keys
between an EVM and its corresponding AVM. This can be
achieved securely, for example, by using a pre-embedded
key in the AVM and the EVM, which can be configured by
the user before deployment and protected from the hyper-
visor using image encryption. Other approaches to securely
distributing the secret keys may also be implemented.

2) Cross-VM Communication Protocol: The communica-
tion protocol consists of 10 steps, which are illustrated in
the block diagram in Figure 4(a) with its execution flow in
Figure 4(b). In both figures, each step is marked with a circled
number either in black or white: black circles represent intra-
environment steps and white ones inter-environment steps.
Both figures share the same color scheme to reflect which
environment the flow is in.

We describe the protocol using an example of transferring
data from the untrusted component to the trusted component:
In ¶, the sender thread in the AVM prepares for the data

7

Hypervisor – vSGX Hub

VM1 – Cross-VM Communication

CPUID Handler

VM2 – Cross-VM Communication

Sender Data Packer

Crypto
Engine

IRQ Handler

Dispatcher

Crypto
Engine

②

❸

④⑤

❻
❼

❶

❽

Dispatch
Queue

Send Worker

Source

Send Queue

Destination
❾

(a) Software Components

Sender

Hypervisor – CPUID Handler

Receiver – Dispatcher

Hypervisor – Sender Worker

Receiver – IRQ Handler

Wait for ACK.

Function Call
CPUID

Semaphore
IRQ

❶

②

❸

④
⑤

❼ ❽

❻

❾

Hypervisor – CPUID Handler
VM Thread

VM Thread

kthread

(b) Execution flow

Fig. 4: Cross-VM communication.

in a shared memory, and then signals the hypervisor with a
CPUID instruction (­), the parameters of which indicate the
ID of the target VM, as illustrated in Figure 4. The vSGX hub,
a vSGX component in the hypervisor in charge of cross-VM
communication, will pick up the packet in the shared memory.
Next, the CPUID Handler asks the Send Worker (¸) to inform
the target EVM via an IRQ Handler (¯). The IRQ Handler will
use a CPUID to inform the hypervisor and retrieve the packet
to its shared memory (°). Then, it runs through a Dispatch
Queue (» and ¼) into the Dispatcher (½) where the data is
decrypted, stitched, and finally sent to the corresponding data
handler (¾). The Dispatcher is a kernel thread worker that
dispatches the data to its handler (Destination). The Dispatcher
and the Destination Handler are shown as two blocks, but
in our implementation the Dispatcher is integrated with the
Destination handler.

E. Remote Attestation

1) Launching EVM with SEV Attestation: The trust chain
of vSGX relies on SEV’s remote attestation framework [11] to
deploy an EVM with a vSGX provider’s encrypted VM image,
where any fused secret inside and the image’s encryption key
are only known by the provider.

Specifically, the root trust of AMD SEV is the AMD root
key, Kark, which signs the AMD signing Key, Kask. Both
keys are known only to the AMD Key Distribution Server
(KDS). During the manufacturing process, each SEV platform
is equipped with a pair of chip-unique Chip Endorsement
Keys, Kcek, the public portion of which is signed by Kask.
During the initialization phase of an SEV platform, the SEV
firmware generates a Platform Diffie-Hellman key Kpdh and
a Platform Endorsement Key Kpek. Kpek is signed by a Kcek

and Kpdh is signed by Kpek.
After initialization, the hypervisor retrieves the certificates

for Kpdh and Kpek along with a unique platform ID from the
SEV firmware. When the guest owner requests to authenticate
the platform (before launching an SEV VM on it), the hypervi-
sor forwards these two certificates and the unique platform ID

to the guest owner. The guest owner can then obtain the signed
certificates of KcekID

, Kask and Kark from KDS using the
platform ID and then authenticate the platform by verifying
the following certificate chain:

Kpdh → Kpek → KcekID
→ Kask → Kark

To launch an EVM, the following steps are taken: First,
the guest owner sends to the hypervisor her DH public key,
an encrypted enclave image, which is encrypted by a disk
encryption key Kblk, and an Open Virtual Machine Firmware
(OVMF) file. Next, the hypervisor issues the LAUNCH_START
command to pass the guest owner’s DH public key to
the SEV firmware. A secure channel, encrypted by a DH-
derived Transport Encryption Key Ktek, is established be-
tween the SEV firmware and guest owner. Then, the hy-
pervisor copies the OVMF file into the memory and calls
the LAUNCH_UPDATE_DATA command to perform in-place
memory encryption of the OVMF file. The hypervisor calls the
LAUNCH_MEASURE command to instruct the SEV firmware
to calculate a measurement of the OVMF memory, which
is sent to the guest owner via the secure channel. Finally,
the guest owner verifies the measurement, sends Kblk to the
hypervisor after encrypting with Ktek. The hypervisor uses
the LAUNCH_SECRET command to provision encrypted Kblk

into the launched guest VM, which is used by the OVMF to
decrypt and load the encrypted image of the enclave VM. As
such, the chain of trust is established as follows:

EVM→ Kblk → Ktek → Kpdh → · · · → Kark

2) vSGX Remote Attestation: vSGX stores the root secret
and the hash of the vSGX platform provider’s public key in
the enclave kernel, which is protected from both the AVM
and the hypervisor. The root secret can be used to derive
the secret keys using EGETKEY by following Intel SGX’s
semantics. The public key hash, similar to what described in
SGX’s manual [32], can enable the vSGX platform provider to
launch provider-signed enclaves with a similar capability like

8

the Intel-signed Quoting Enclave. EVMs allow the provider-
signed enclaves to derive attestation keys in the enclave kernel.
Therefore, vSGX allows enclave code to perform remote attes-
tation using a similar routine as legacy Intel SGX applications.

Specifically, with the capability to launch multiple enclaves,
vSGX can support the legacy Intel SGX’s remote attestation
routine. A special vSGX-signed enclave called the Quoting
Enclave (QE) is used to provide remote attestation, just like
the Intel SGX. The QE has special vSGX-signed only attribute
that allows it to get the signing key of the platform, Kp,
which is derived using a pre-deployed fused secret by vSGX’s
service provider. Kp is used to generate signatures that can
only be verified by the vSGX’s service provider. By confirming
whether the report is properly signed with Kp, we can verify
the integrity of both the QE and the enclave binary.

It is worth noting that trusting the signing key Kp implies
the trust on the entire EVM kernel image. The measurement
of the kernel image, however, is not included in the trust
chain. Doing so would require a modification of the OVMF
bootloader to enable measured boot of the enclave kernel.
We leave the implementation of such a measured boot to our
future work.

V. SECURITY ANALYSIS

In this section, we analyze the security of vSGX and
discuss how vSGX achieves the desired security goals,
namely our G2 and G3.

A. Execution Security

ENCLS and ENCLU Instructions. On Intel processors, both
ENCLS and ENCLU instructions are implemented using mi-
crocode. The execution of these instructions is protected by
the CPU hardware and un-interceptable by software pro-
grams. While vSGX cannot use microcode to execute ENCLS
and ENCLU instructions, it uses the following approaches to
achieve their security.
• ENCLS instructions are intended for enclave managements

and thus we simply send the parameters of the instruction
to the EVM to perform its functions. We use an end-
to-end encryption so the hypervisor cannot modify the
request. Also we perform the sanity checks specified by the
SGX reference inside the EVM so that a malicious request
will not succeed. The actual function of the instruction is
executed in the EVM and it is thus un-interceptable by
software running in the AVM or other EVMs.
• ENCLU instructions are mostly executed inside the EVM

except for EENTER and ERESUME. The parameters of
ENCLU instructions will be checked in accordance with
the SGX reference to make sure that they are safe. Since
ENCLU instructions are executed inside the EVM, their
execution can be trusted.

Illegal Instructions inside Enclaves. Enclave code is pro-
hibited from accessing system resources in Intel SGX by
disallowing it to execute instructions like SYSCALL. vSGX
achieves this restriction by performing a check before the

entrance of SYSCALL and software interrupt handlers to check
if the current thread is an enclave thread. If so, the handler
will throw a #UD fault. By doing so, we make sure that the
enclave code can never use the system services in the EVM
and the behaviour is the same as Intel SGX.

Entering and Exiting Enclaves. In vSGX, we follow the
exact enclave entering and exiting semantics as SGX to
transfer the control flow into the enclave which protects the
security of the execution.
• EENTER and EEXIT: SGX allows the control flow to trans-

fer into the enclaves via EENTER and transfer out of the
enclaves via EEXIT. Unlike SGX, control flow transferring
in vSGX crosses the boundary of two VMs. EENTER in our
implementation will put the app thread to sleep and launch
an enclave thread in the EVM. When the enclave thread
finishes its execution, EEXIT terminates the enclave thread
and wakes up the sleeping app thread. The only potential
attack vector is to wake up the sleeping app thread early
and prevent future EEXIT, which can be performed by an
adversary with kernel access to the AVM. However, this
only affects the apps in the AVM, but not the EVM.

• AEX and ERESUME: Like Intel SGX, when a fault
happened to an enclave, we transfer back the control flow
to AVM with a synthetic state so that the enclave’s data
including the register state is never leaked. Unlike Intel
SGX that uses XSAVE to save the state of the enclave,
vSGX simply puts the enclave thread to sleep so we
can wake it and resume the execution directly when an
ERESUME comes. The enclave thread sleeps inside the
EVM so it is protected from tampering by any adversary.
However, unlike SGX, in vSGX AEX is not triggered by
interrupts or VMEXITs. This is because the EVM kernel
is trusted to handle the unrelated interrupts and exceptions
like timer events, and therefore, unlike SGX, context
switches are not necessary.

B. Memory Encryption and Isolation

Memory Encryption. Both vSGX and SGX prevent software
components outside the EVM (enclave for SGX) from reading
encrypted memory in plaintext, and thwart physical attacks,
such as cold-boot attacks and DMA attacks, from directly
reading secrets in the encrypted memory. Although SEV’s
memory encryption is not authenticated, and thus is slightly
weaker than that of SGX, SEV-SNP does preserve memory
integrity. Hence, vSGX achieves comparable security as SGX.
Moreover, while SGX uses a single ephemeral memory en-
cryption key for all enclaves [29], SEV uses different keys for
different VMs. Therefore, as vSGX protects each enclave in a
separate VM, which is encrypted with a different key, vSGX
is even more secure than SGX in this sense.

Enforcing Enclave Memory Access Rules and Isolation.
Intel SGX prevents accesses to enclave memory if (a) the CPU
is not in the enclave mode, (b) the corresponding EPCM entry
has blocked flag set, (c) the target page is not a PT_REG
page (i.e., a regular enclave page), (d) the current enclave’s

9

EID is not the same as the owner of the page, and (e) the
virtual address does not match the EPCM entry’s record [33].
vSGX achieves similar levels of security guarantees via VM
isolation. vSGX implements EPCM to maintain the metadata
of each EPC page, including the page types (e.g, PT_REG),
virtual address mapping, access permission, etc.

Although our software-maintained EPCM is not consulted
during page table walk, EVM ensures that its page table
correctly reflects the corresponding EPCM entries: (1) None
PT_REG pages (e.g., PT_SECS) do not have user-space map-
ping, so that they cannot be accessed by the enclave code; (2)
when a page transitions to blocked state, vSGX sets its access
permission to PROT_NONE, so that the page is not accessible;
(3) the access permission and virtual address mapping is
correct. Therefore, as the enclave’s page table is protected by
the enclave kernel in an SEV VM, vSGX maintains the same
level of security as SGX. Moreover, because vSGX enforces
one enclave per VM without re-using an EVM, with the VM
isolation provided by SEV, we are able to achieve enclave
isolation just like Intel SGX.

Restricted Non-enclave Memory Access in Enclave Mode.
Intel SGX allows code running in the enclave mode to access
non-enclave memory. However, it disallows any non-enclave
memory to be mapped to virtual addresses inside ELRANGE,
which is reserved for enclave memory. Moreover, the TLB
entries of non-enclave memory pages loaded in the enclave
mode are forced to have the Non-eXecutable (NX) flag set, in
order to ensure that the enclave never executes code outside it.

vSGX achieves the same level of security via fetch-and-map
and switchless syncing. First, fetch-and-map would never map
non-enclave memory to the EVM if its virtual address falls in
ELRANGE. Therefore, any memory access to a virtual address
in the ELRANGE without a valid mapping will directly trigger
a page fault. Second, to prevent executing code in the non-
enclave memory, vSGX also forces that the fetched pages are
non-executable. We also note that switchless syncing does not
leak protected data to the outside, as protected data in the
enclave must fall inside the ELRANGE, which will never be
fetched or synced with untrusted memory in the AVM.

C. Cross-VM Communication

The only interface an EVM exposes to the outside world is
the cross-VM communication interface. In our design, a packet
must fall into one of the three categories: An instruction-
emulation packet, a switchless-syncing packet and a fetch-and-
map packet.
• An instruction-emulation packet is dispatched to its corre-

sponding enclave as specified by the EPC page it operates
on. The verification is enforced in the local dispatcher of
that enclave according to the Intel SGX specification as
discussed in §V-A.
• A switchless-syncing packet is first dispatched to its

corresponding enclave. Then, the enclave will check its
switchless-syncing list to see if the page to be synced is
in the list. If and only if so, the packet is accepted. The

correctness of the synced page is not a concern, because
non-enclave memory is not expected to be correct.

• A fetch-and-map packet will be compared against a list
of thread waiting in the kernel and see if any of them is
waiting on the specific address. If so, the packet is accepted
and the page is mapped to the non-enclave memory in the
EVM. If not, the packet is dropped.

As such, as all packets sent to the EVM is scrutinized, the
adversary cannot send arbitrary packets that are inconsistent
to the SGX semantics. Moreover, reordering packets does not
pose new security concerns. For instruction emulation, because
vSGX only allows one cross-VM instruction to be executed
at a time, there is no concern that the hypervisor can reorder
the execution. For memory-related packets, reordering them
can cause overwrite problem in untrusted memory. However
because untrusted memory is not protected, this behaviour
does not introduce security problem in SGX’s model.

D. Discussion on TCB Size

In Intel SGX, the only software component inside the TCB
is the enclave binary. However, the microcode implementation
of SGX instructions is also part of TCB as they are firmware
running on top of the hardware. In vSGX, the TCB contains
the enclave kernel, the enclave manager and the enclave binary.
In our implementation, we have added 8, 840 lines of code
to a Linux Kernel 5.10.20. The enclave manager is relatively
small and has only 250 lines of code. So the overall TCB size
change in our system is 9, 090 lines of code plus the size of a
minimized Linux Kernel. We argue that the Linux Kernel can
be replaced with a formally verified kernel such as seL4 once
it gets the support of AMD SEV-ES. This allows the whole
extra components we have added into the enclave kernel to be
fully trustworthy.

vSGX does not significantly increase the attack surface,
either. Because the only interface an EVM exposes to the
outside is the cross-VM communication interface, the most
powerful attack an adversary outside the TCB may launch
is the attack against the cross-VM communication interface,
such as eavesdropping, injecting, dropping, modifying com-
munication packets. However, as discussed in §IV-D and §V-C,
these attacks are prevented via authenticated encryption, replay
prevention, and sanity checks performed on the EVM side.
Therefore, vSGX can reduce the attack surface of an SEV
VM down to a comparable level of SGX.

VI. EVALUATION

We have implemented vSGX with 16, 167 lines of C code
(LoC) and 121 lines of x86-64 assembly. The AVM module
contains 6, 377 LoC and 121 lines of assembly, 8, 840 LoC
in the enclave kernel, 250 LoC for then enclave manager and
700 LoC in the hypervisor’s KVM module. The source code
of vSGX is made available at github.com/OSUSeclab/vSGX.
In this section, we present the evaluation result. Since we
have answered the security questions of vSGX in §V, in this
section we would like to answer the questions related to the
performance overhead of vSGX. To this end, we designed

10

github.com/OSUSeclab/vSGX

and chose a set of benchmarks and real world applications to
understand the overhead at both the component level and the
application level. A set of microbenchmaks were designed
and reported in §VI-A1 to reveal the performance on an
instruction and component level; A macrobenchmark software
was chosen in §VI-A2 to reflect overall performance. Finally,
we also report the compatibility and performance overhead
for real world SGX application in §VI-B.

Note that the SEV-ES platform we conducted our
experiments on was a GIGABYTE MZ31-AR0 with an
AMD EPYC 7251 8-Core Processor running at 2.1GHz. This
SEV-ES machine has 64 GiB of memory and is installed
with a Linux kernel 5.10.0 provided by AMD to support
SEV-ES host capabilities. We configured our VMs with 2
SMP cores and 4 GiB memory each with a Linux kernel
5.10.20. Additionally, we also ran controlled experiments on
an Intel SGX machine, which was a DELL OptiPlex 5060
with an Intel Core i7-8700 6-Core Processor running at 3.2
GHz, to compare the performance differences. This SGX
machine was equipped with 32 GiB of memory and running
Linux kernel 4.15.0. By default, all of the performance
overheads were measured by running the target benchmark
10 times and then calculating the average.

A. Benckmarks

1) Microbenchmarks: vSGX has many components respon-
sible for an enclave program execution. At a high level, an en-
clave will (1) need to be initialized, (2) perform ECall/OCall,
(3) execute specific SGX leave instructions, (4) communicate
cross-VM, (5) fetch out-of-enclave memory, and (6) perform
switchless synchronization if necessary. Therefore, we de-
signed six microbenchmarks to characterize the performance
overhead related to these executions.

(1) Enclave Initialization. We first measured the overhead
of creating and initializing an enclave on vSGX, and this
overhead often involves a set of SGX instructions including
ECREATE, EADD, EEXTEND, and EINIT. Specifically, we
launched enclaves of different sizes (in the number of heap
pages, which will be reflected by EADD and EEXTEND) and
report the measured latency in Figure 5 (a) (red line). We
can observe that the enclave initialization overhead is mostly
linear to its size (since ECREATE and EINIT is a one-time
overhead). We also ran the same set of experiments on an Intel
SGX machine. The result is shown in Figure 5 (a) (blue line).
For example, to launch a 550-page enclave, it took vSGX
on average 0.92s, which is 10x slower than that on Intel
SGX (about 92ms). Other data points show similar slowdown.
However, we emphasize that as enclave initialization is very
infrequent, the amortized overhead is small for the entire life
cycle of an enclave.

(2) ECall/OCall Latency. We next measured the latency
of ECall/OCall. Essentially, the latency of an ECall is an
EENTER and EEXIT pair, and for an OCall that is an
EEXIT and EENTER pair; we just need to measure one of
them. To this end, we measured the latency of an ECall

Leaf Average Overhead (µs) Packets Sent

E
N
C
L
S

EADD 1421.23 3
EAUG 990.20 2
EBLOCK 840.85 2
ECREATE 3719.06 3
EDBGRD N/A N/A
EDBGWR N/A N/A
EEXTEND 986.76 2
EINIT 811.03 2
ELDB/ELDU 1958.13 4
EMODPR 1071.26 2
EMODT 976.15 2
EPA 1273.26 3
EREMOVE 1013.70 2
ETRACK N/A N/A
EWB 1818.66 4

E
N
C
L
U

EACCEPT 0.79 -
EACCEPTCOPY 2.19 -
EENTER N/A -
EEXIT N/A -
EGETKEY 5.00 -
EMODPE 0.91 -
EREPORT 18.91 -
ERESUME N/A -

TABLE II: SGX leaf instruction performance in vSGX

by implementing an empty ECall function, and measuring
how long it takes to execute an EENTER and an EEXIT
instruction. Note this empty ECall function also includes
code from Intel SGX SDK. We executed this ECall 200
times on both Intel SGX and vSGX. The result is shown in
Figure 5 (b). We can observe that on average the time to call
an empty ECall is about 1.5ms on vSGX and 9.3µs on Intel
SGX, which is 161x faster than vSGX. This 1.5ms overhead
implies that the maximum throughput of vSGX’s ECall is
about 650 IOPS, which we believe is reasonable for most use
cases like SGX-protected password authentication.

(3) SGX Leaf Instruction Latency. Next, we measured the
latency of executing SGX leaf instructions by measuring
the total time of running the instruction 20 times and then
calculating the average. Then we repeated this measurement
10 times to estimate the average latency. The results are
shown in Table II.

Executing an ENCLS leaf instruction involves either 2,
3 or 4 packets. We can observe that an ENCLS leaf takes
about 0.9ms to finish for a 2-packet instruction, 1.3ms for
a 3-packet instruction and 1.8ms for a 4-packet instruction.
One exception is the ECREATE instruction, which takes
about 3ms. This is because ECREATE also sets up an enclave
manager for the new enclave.
ENCLU instructions are normally executed inside the en-

clave except for EENTER and ERESUME. The performance of
EENTER, ERESUME, and EEXIT used in enclave entrance and
exit is measured in our second microbenchmark and thus they
are left empty. We can see that in most cases the execution
of these local ENCLU instructions can be finished within
5µs. Note that EGETKEY and EREPORT is relatively slower
because they involve cryptographic operations.

(4) Cross-VM Communication Overhead. To understand the
overhead of our cross-VM communication (see Figure 4), we
measured the overhead by logging a timestamp before and

11

(a) Enclave initialization overhead (b) ECall overhead (c) Cross-VM overhead (d) Memory access latency (e) Switchless syncing latency
Avg. 1499.131 9.326

vSGX Intel SGX

T
im

e/
E

C
al

l (
μs

)

0

500

1000

1500

2000

2500

3000

Step

❶ ② ❸ ④ ⑤ ❻ ❼ ❽ ❾

T
im

e/
μs

0

100

200

300

400

500

600

700

Avg. 919.189 0.427
Fetch Non-Fetch

L
at

en
cy

/A
cc

es
s (

μs
)

0

100

200

300

400

500

600

700

800

900

1000

Avg. 53.346

L
at

en
cy

 (m
s)

0

10

20

30

40

50

60

70

335.4
414.6 443.0

535.6 538.5
614.1

655.1

765.9 783.7
845.8

926.4

11.2 19.1 27.4 35.5 44.0 51.8 60.1 68.2 76.1 84.1 92.3

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1000.0
1100.0

50 100 150 200 250 300 350 400 450 500 550

Ti
m

e/
m

s

Enclave Size/Pages

vSGX

Intel SGX

Fig. 5: Result of microbenchmarks of vSGX

after each step. Since the communication crosses the VM
boundary, we synchronized the time of our VMs and the
hypervisor using the Precision Time Protocol (PTP) [66] to
achieve a sub-microsecond precision.

Figure 5 (c) reports the measured latency. Specifically, step
­ and step ¯ are just CPUID and IRQ event that costs less
than 10µs, which is not very significant comparing with others.
For other cases, we can see that most of them has a latency
under 100µs except for step ¼ and step ¾. This is because
step ¼ is using a semaphore to pass data to a dispatcher. Either
scheduling or a busy dispatcher can result in long latency. The
most time-consuming step is ¾, which handles the instruction
emulation of an SGX instruction. The time variation of this
step is also huge because different instructions’ emulation
routines can result in different overheads.

By adding up the latency of all steps, we see that if the
packet is the first packet of a 3- or 4-packet instruction, which
does not involve step ¿, it takes about 300µs to process. If
a packet is part of an instruction, which needs emulation, it
takes about 600µs to complete. Overall, with our estimation
it takes about 900µs for a 2-packet instruction, 1,200µs for
a 3-packet instruction and 1,500µs for a 4-packet instruction.
We have a theoretical overhead that is very close to the value
we get from the test.

(5) Memory-Fetching Overhead. When accessing untrusted
memory from the enclave, there will be memory fetching
overhead. We therefore designed a benchmark to measure the
latency of accessing untrusted memory, and also compared
with the cases in which the page is already fetched. The result
is shown in Figure 5 (d). Accessing a local or already-fetched
page took about 0.4µs while fetching a page would cause a
0.9ms latency. This result also suggests that once a page is
fetched, accessing it would not cause any significant overhead,
just like accessing a local page.

(6) Switchless Syncing Overhead. Finally, we would like
to characterize how long it takes to have the changes in
one VM (e.g., an AVM) to be synced to another VM (e.g.,
an EVM). We measured the latency of switchless syncing
by measuring the round-trip latency then dividing it by 2.
Specifically, the EVM first alters a non-enclave page to trigger
a switchless syncing; when the change is noticed by the AVM,
it immediately changes it to trigger another syncing. When
this change is noticed by the EVM, one round-trip syncing is
finished. The measurement result is shown in Figure 5 (e). We
can see that the average latency is about 53ms. This result

Test Iterations/second
vSGX AMD SEV-ES Intel SGX

NUMERIC SORT 396.61 1428.6 2061.3
STRING SORT 45.334 944.38 107.2
BITFIELD 3.9954e+07 5.534e+08 9.0103e+08
FP EMULATION 249.51 693.26 595.62
FOURIER 27528 55657 1.432e+05
ASSIGNMENT 46.701 49.415 76.641
IDEA 9980.4 12214 7329.6
HUFFMAN 4087.7 4332.4 7264
NEURAL NET 70.121 99.638 132.22
LU DECOMPOSITION 478.95 2909.8 3982.4

TABLE III: BYTEmark raw result

is in line with our expectation: As we chose 100ms as our
switchless syncing interval, it takes on average 50ms for a
page to get synced.

2) Macrobenchmarks: We ran NBENCH [2] (also called
BYTEMARK) on vSGX, a vanilla AMD SEV-ES VM, and an
Intel SGX machine to compare their performance. NBENCH
is a commonly used benchmark for SGX works (e.g., [26],
[75]). Table III shows the raw score of the benchmarks run on
each platform. We also normalize the scores (by dividing the
scores of vSGX) in Figure 6.

First, by comparing the performance scores of vSGX and
the vanilla SEV-ES, we can see that the performance overhead
(geometric mean) introduced by vSGX on SEV-ES machines
is 205%. In Figure 6, we can see that most tests show less
than 3x slowdown, except for the STRING SORT, BITFIELD
and LU DECOMPOSITION which lead to higher overhead.
After examining the code, we found that BITFIELD triggers
massive amount of ECalls and STRING SORT randomly
accesses large data objects in the non-enclave memory. LU
DECOMPOSITION also has a 6x slowdown which is caused
by moderate ECalls. From this we can see that for vSGX, two
factors can severely impact the performance: ECall frequency
and non-enclave memory accesses.

Second, the comparison between vSGX and Intel SGX
shows the slowdown when migrating from SGX to vSGX.
The geo-mean of the overhead is 221%. The score compared
directly across different CPU architecture could be used as
a reference on how the app would perform when migrating
directly from an SGX machine.

B. Real World SGX Application

We run several real world applications (shown in Table IV)
on vSGX. We particularly present the performance of running
WOLFSSL [73] and Graphene, because cryptographic opera-

12

0

1

2

3

4

5

6

NUMERIC
SORT

FP
EMULATION

IDEA HUFFMAN

In
de
x

vSGX (Baseline)

AMD SEV-ES VM

Intel SGX

0

5

10

15

20

25

STRING SORT BITFIELD ASSIGNMENT

In
de
x

vSGX (Baseline)

AMD SEV-ES VM

Intel SGX

0
1
2
3
4
5
6
7
8
9

FOURIER NEURAL NET LU
DECOMPOSITION

In
de
x

vSGX (Baseline)

AMD SEV-ES VM

Intel SGX

(b) Memory Intensive Test (c) FP Intensive Test(a) CPU Intensive Test
Fig. 6: Normalized BYTEMark result comparison

(a) Time Consumption Launching
Graphene SGX on vSGX (b) cURL Execution Time (c) GMPbench 0.2 Score

1538.046

199.806

0

200

400

600

800

1000

1200

1400

1600

1800

Graphene-SGX on vSGX Graphene-Direct

D
ow

nl
oa

d
Ti

m
e

(m
s)

66.927 s

237.631 s

0.164 s 0.005 s

EADD EEXTEND EPA Others

3528.122 3531.557

0

500

1000

1500

2000

2500

3000

3500

4000

Graphene-SGX on vSGX Graphene-Direct

Sc
or

e

Fig. 7: Performance of Graphene-SGX on vSGX

App SDK

Graphene

Samples

None
cURL
Nginx
GMPbench

WOLFSSL Intel SGX SDK
GMP Library for Intel SGX & Examples Intel SGX SDK
Intel SGX SDK Sample Enclave Intel SGX SDK
SGX NBench Intel SGX SDK

TABLE IV: Apps tested to run on vSGX

tions are typical for enclave apps and Graphene is sophisticated
enough to demonstrate the capabilities of vSGX.

To Run an SGX Application in vSGX: For the apps we
tested, most of them just run directly without any modification.
The exceptions are those checking the CPU family using the
CPUID instruction (e.g., Graphene), which we had to bypass
the check. Applications using Intel-specific instructions like
AVX-512 are also not supported.

WOLFSSL Performance: The SGX implementation of
WOLFSSL comes with a benchmark named WOLFCRYPT [72].
This benchmark tests encryption, decryption, digests and sig-
nature verification. We ran this benchmark on both vSGX and
SGX. The result is shown in Table V. The Ratio column is
the result of Intel SGX’s raw performance divided by vSGX’s.
We can see that for most encryption, decryption, and digest
operations, Intel SGX is about 0.5x faster than vSGX. For
RSA algorithm and DH key exchange, vSGX could even
beat Intel SGX. I/O intensive signature verification and key

generation are the weakness of vSGX. The geometric mean
of the overhead of the benchmarks shows that Intel SGX is
about 0.9x faster than vSGX. Considering we are testing vSGX
in a virtualization environment on an AMD’s first generation
Zen server processor that is architecturally less powerful than
an Intel desktop processor, this result is acceptable.

Graphene Performance: We ran cURL, GMPbench and
Nginx inside Graphene on vSGX to test its capability of
supporting large enclave apps. The launch time of a 256 MB
size Graphene is about 5 minutes on vSGX vs. 0.5 second
on Intel SGX. This is because launching such a large enclave
requires massive amount of EADD and EEXTEND. The time
consumption of each specific instruction when launching
Graphene is illustrated in Figure 7 (a). One can easily notice
that EEXTEND is responsible for 3/4 of the overhead. This
is because that each EEXTEND can only hash 256 bytes so it
requires 16 of EEXTENDs to hash a whole 4,096-byte page.
A solution is to piggyback contiguous EEXTEND requests.
However this will lead to changes in SGX’s semantics, so we
leave this for future work.

To measure the performance of apps after Graphene is
launched, we evaluated cURL and GMPbench. The former
is an I/O (networking) intensive workload and the latter is
CPU bound. We compared Grapehen-SGX on vSGX with
Graphene-Direct mode, which runs the library OS directly
outside an enclave. For the cURL test, we used it to accesss
https://www.ieee-security.org and measured the latency. The
performance is illustrated in Figure 7 (b). Graphene Direct is

13

https://www.ieee-security.org

vSGX Intel SGX Ratio
MB/s MB/s

RNG 82.57 117.51 1.42
AES-128-CBC-enc 187.36 363.82 1.94
AES-128-CBC-dec 172.59 399.39 2.31
AES-192-CBC-enc 156.95 309.70 1.97
AES-192-CBC-dec 184.4 341.43 1.85
AES-256-CBC-enc 139.01 269.16 1.94
AES-256-CBC-dec 123.05 291.93 2.37
AES-128-GCM-enc 54.10 94.98 1.76
AES-128-GCM-dec 56.02 94.99 1.70
AES-192-GCM-enc 54.36 90.29 1.66
AES-192-GCM-dec 54.49 90.16 1.65
AES-256-GCM-enc 51.78 86.79 1.68
AES-256-GCM-dec 49.74 86.64 1.74
ARC4 138.05 478.18 3.46
RABBIT 222.37 710.37 3.19
3DES 22.60 39.05 1.73
MD5 296.77 820.75 2.77
SHA 223.09 661.65 2.97
SHA-256 115.56 298.76 2.59
HMAC-MD5 377.70 821.12 2.17
HMAC-SHA 381.57 662.07 1.74
HMAC-SHA256 164.82 298.90 1.81

KB/s KB/s
PBKDF2 9.49 34.63 3.65

op/s op/s
RSA 2048 Public 10264.09 8443.25 0.82
RSA 2048 Private 188.40 146.93 0.78
DH 2048 Key Gen 378.24 374.80 0.99
DH 2048 Agree 614.50 375.19 0.61
ECC 256 Key Gen 453.50 6569.28 14.49
ECDHE 256 Agree 1461.67 2201.94 1.51
ECDSA 256 Sign 3611.59 5297.49 1.47
ECDSA 256 Verify 1336.96 1875.64 1.40
Geo Mean 1.90

TABLE V: WOLFSSL’s WOLFCRYPT benchmark on vSGX
and Intel SGX

about 7x faster than Graphene-SGX on vSGX. This is because
the network traffics are handled outside the enclave which
caused massive amount of OCalls and accesses to untrusted
memory. Besides, the enclave would have to copy those buffer
into its own memory causing extra untrusted memory access.
The result for GMPbench is illustrated in Figure 7 (c). It can be
observed that vSGX does not add burden on CPU computation.
These results imply vSGX is better suited for CPU intensive
workloads like cryptographic operations.

VII. LIMITATIONS AND FUTURE WORK

vSGX can be improved in multiple avenues. We list some
of the ideas to improve vSGX below.
• vSGX currently does not support enclave debugging.

Specifically, EDBGRD and EDBGWR are not supported. We
leave the support for enclave debugging to future work.
• The cross-VM memory syncing in vSGX cannot reflect

real-time changes. As such, memory barriers and atomic
instructions between the enclave and the application code
will not behave correctly. This can interfere with locks
implemented with atomic instructions sharing with the
untrusted world. A solution is to use OCalls to implement
locks on shared memory pages.
• vSGX does not yet fully support Intel’s CPUID semantics.

For instance, if the software uses CPUID to check if SGX
is supported, the check would return negative. This can
be supported by software emulation, but as the behavior
of CPUID is architecture-dependent, we leave it to future

work. Currently, we modified the Intel SDK and driver to
bypass the application’s check in our implementation.

• To improve the overall performance of vSGX, one could
remove the expensive cross-VM communication and map
the AVM pages directly to EVM’s address space. This
design choice, however, is only viable if the application
memory in the AVM is not encrypted, which contradicts
with our current threat model. We will explore this design
in future work.

• We assume the implementation of the EVM kernel is
secure. A verifiable kernel, like SEL4, can be leveraged
in vSGX to build a secure kernel. As enclave binaries do
not need support of system calls and I/O, integrating SEL4
into EVM would be feasible.

• vSGX illustrates an implementation of SGX using soft-
ware, enabling easy extension of existing SGX function-
alities without hardware or firmware upgrades. We will
explore the use of vSGX as a software-defined enclave
implementation in future work.

VIII. RELATED WORKS

There are numerous efforts in supporting the growth of the
TEE software developer community. In particular, there are a
variety of SDKs (e.g., Intel SGX SDK, Rust SGX SDK [69]).
Efforts have been made to provide uniform TEE API interfaces
to the developer regardless of TEE implementations. Exam-
ples include the Asylo framework proposed by Google [13],
the Open Enclave framework by Microsoft [51], and the
Open Portable Trusted Execution Environment (OP-TEE) [52].
There are also approaches of running legacy code directly in
an enclave as demonstrated in SCONE [12], Haven [17], and
Graphene-SGX [21]. Others aim to integrate SGX in cloud
and containers [9], [62], [63] and to support enclave migra-
tion [28], [53]. In this work, we focus on providing binary-
compatibility of SGX enclave applications and demonstrating
the execution of SGX enclaves on AMD platforms.

There are also efforts to decouple TEEs from hardware.
Komodo [24] is such a work representing this direction, and
it is a software-defined enclave environment using ARM’s
TrustZone. The key idea of Komodo is to detach the enclave
management such as attestation and memory encryption from
hardware, based on the observation that the security properties
of SGX does not necessarily have to be implemented fully in
the CPU. Komodo is implemented using assembly language
with formal verification, thus leading to a trustworthy design.
However, unlike vSGX, Komodo does not provide any com-
patibility to existing software so developers have to adopt the
new environment with Komodo’s SDK.

Our work is also related to OpenSGX [35], which is an
SGX emulation environment implemented with QEMU. It was
created at the time when SGX-capable processors were not
available. OpenSGX supports majority of the SGX instructions
according to the Intel manuals. OpenSGX, however, is only an
emulation environment without any protection to the enclave
memory. In contrast, vSGX offers SGX-compatible security

14

guarantees with the support of AMD SEV, which paves the
way towards its use in production systems.

IX. CONCLUSION

We have presented vSGX, a novel system to virtualize the
execution of Intel SGX enclave atop AMD SEV. With transpar-
ent instruction emulation, cross-VM memory synchronization,
and tight integration with the SEV-based memory encryption
and isolation, vSGX provides binary-compatible support for
SGX enclave applications without losing security. We have
implemented vSGX and demonstrated it incurs reasonable
performance overhead for SGX applications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful com-
ments, which have significantly improved the paper. Shixuan
Zhao and Zhiqiang Lin were partially supported by NSF
grant 1834213 and 1834216, and Yinqian Zhang was in part
supported by Ant Group.

REFERENCES

[1] enigmampc/SafeTrace: Privacy preserving voluntary COVID-19 self-
reporting platform. https://github.com/enigmampc/SafeTrace. (Accessed
on 08/05/2020).

[2] The nbench benchmark ported to sgx. https://github.com/utds3lab/sgx-
nbench. (Accessed on 11/27/2020).

[3] Azure Confidential Computing – Protect Data-In-Use — Microsoft
Azure. https://azure.microsoft.com/en-us/solutions/confidential-c
ompute/, (Accessed on 8/16/2021).

[4] Introducing Google Cloud Confidential Computing with Confidential
VMs — Google Cloud Blog. https://cloud.google.com/blog/products/i
dentity-security/introducing-google-cloud-confidential-computing-wit
h-confidential-vms, (Accessed on 8/16/2021).

[5] Nitro enclaves. https://aws.amazon.com/ec2/nitro/nitro-enclaves/,
(Accessed on 8/16/2021).

[6] Affected Processors: Transient Execution Attacks & Related Security
Issues by CPU. https://software.intel.com/content/www/us/en/develop/t
opics/software-security-guidance/processors-affected-consolidated-prod
uct-cpu-model.html, (Accessed on 8/19/2021).

[7] Alibaba Cloud Released Industry’s First Trusted and Virtualized Instance
with Support for SGX 2.0 and TPM - Alibaba Cloud Community. https:
//www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-tru
sted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm 596
821, (Accessed on 8/19/2021).

[8] Advancing confidential computing with asylo and the confidential com-
puting challenge — google cloud blog. https://cloud.google.com/blog/pr
oducts/identity-security/advancing-confidential-computing-with-asylo-
and-the-confidential-computing-challenge. (Accessed on 09/15/2019).

[9] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner. S-
faas: Trustworthy and accountable function-as-a-service using Intel
SGX. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud
Computing Security Workshop, pages 185–199, 2019.

[10] AMD. AMD SEV-SNP: Strengthening VM isolation with integrity
protection and more. White paper, 2020.

[11] AMD. Secure Encrypted Virtualization API Version 0.24, 2020.
[12] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,

J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, et al. SCONE:
Secure linux containers with Intel SGX. In 12th USENIX Symp.
Operating Systems Design and Implementation, 2016.

[13] Asylo: An open and flexible framework for enclave applications. https:
//asylo.dev/. (Accessed on 09/10/2019).

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. ACM
SIGOPS operating systems review, 37(5):164–177, 2003.

[15] E. Bauman, G. Ayoade, and Z. Lin. A survey on hypervisor based
monitoring: Approaches, applications, and evolutions. ACM Computing
Surveys, 48(1):10:1–10:33, Aug. 2015.

[16] E. Bauman and Z. Lin. A case for protecting computer games with sgx.
In Proceedings of the 1st Workshop on System Software for Trusted
Execution (SysTEX’16), Trento, Italy, December 2016.

[17] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with haven. In Proceedings of the 11th USENIX
conference on Operating Systems Design and Implementation, pages
267–283. USENIX Association, 2014.

[18] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi. Software grand exposure: SGX cache attacks are practical.
In 11th USENIX Workshop on Offensive Technologies, Vancouver, BC,
Aug. 2017. USENIX Association.

[19] C. Cai, L. Xu, A. Zhou, and C. Wang. Toward a secure, rich, and fair
query service for light clients on public blockchains. IEEE Transactions
on Dependable and Secure Computing, pages 1–1, 2021.

[20] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, et al. Fallout: Leaking
data on meltdown-resistant cpus. In ACM SIGSAC Conference on
Computer and Communications Security, pages 769–784, 2019.

[21] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical library
OS for unmodified applications on SGX. In 2017 USENIX Annual
Technical Conference, pages 645–658, Santa Clara, CA, 2017. USENIX
Association.

[22] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SGX-
PECTRE: Stealing Intel Secrets from SGX Enclaves via Speculative
Execution. In 4th IEEE European Symposium on Security and Privacy.
IEEE Computer Society, 2019.

[23] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang. Secure
encrypted virtualization is unsecure. arXiv preprint arXiv:1712.05090,
2017.

[24] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Us-
ing verification to disentangle secure-enclave hardware from software. In
Proceedings of the ACM Symposium on Operating Systems Principles,
Oct. 2017.

[25] Fortanix. Fortanix Rust Enclave Development Platform, 2020. https:
//github.com/fortanix/rust-sgx.

[26] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin. SGX-LAPD: Thwarting
Controlled Side Channel Attacks via Enclave Verifiable Page Faults.
In Proceedings of the 20th International Symposium on Research in
Attacks, Intrusions and Defenses, Atlanta, Georgia. USA, September
2017.

[27] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache attacks on
Intel SGX. In Proceedings of the 10th European Workshop on Systems
Security, 2017.

[28] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li. Secure
live migration of SGX enclaves on untrusted cloud. In 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 225–236. IEEE, 2017.

[29] S. Gueron. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, Report 2016/204, 2016. https:
//ia.cr/2016/204.

[30] M. Hähnel, W. Cui, and M. Peinado. High-resolution side channels for
untrusted operating systems. In USENIX Annual Technical Conference,
2017.

[31] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In 17th USENIX
Security Symposium (USENIX Security 08), San Jose, CA, July 2008.
USENIX Association.

[32] Intel. Intel Software Guard Extensions Programming Reference, 10
2014. https://software.intel.com/sites/default/files/managed/48/88
/329298-002.pdf.

[33] Intel. Intel Software Guard Extensions Developer Reference for Linux
OS, 6 2019. https://download.01.org/intel-sgx/linux-2.6/docs/Intel S
GX Developer Reference Linux 2.6 Open Source.pdf.

[34] Intel. SDK for Intel Software Guard Extensions, 2020. https://software
.intel.com/en-us/sgx/sdk.

[35] P. Jain, S. J. Desai, B. B. Kang, and D. Han. OpenSGX: An Open
Platform for SGX Research. In Proceedings of the Network and
Distributed System Security Symposium, 2016.

[36] D. Kaplan. Protecting VM register state with SEV-ES. White paper,
2017.

[37] D. Kaplan, J. Powell, and T. Woller. AMD memory encryption. White
paper, 2016.

15

https://github.com/enigmampc/SafeTrace
https://github.com/utds3lab/sgx-nbench
https://github.com/utds3lab/sgx-nbench
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://asylo.dev/
https://asylo.dev/
https://github.com/fortanix/rust-sgx
https://github.com/fortanix/rust-sgx
https://ia.cr/2016/204
https://ia.cr/2016/204
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Reference_Linux_2.6_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Reference_Linux_2.6_Open_Source.pdf
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk

[38] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing security and
privacy of tor’s ecosystem by using trusted execution environments.
In 14th USENIX Symposium on Networked Systems Design and
Implementation, pages 145–161, 2017.

[39] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom. Spectre attacks: Exploiting speculative execution. In 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[40] K. Krawiecka, A. Kurnikov, A. Paverd, M. Mannan, and N. Asokan.
Safekeeper: Protecting web passwords using trusted execution environ-
ments. In Proceedings of the 2018 World Wide Web Conference, pages
349–358, 2018.

[41] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson, and
R. Ankele. Exploring the use of intel sgx for secure many-party
applications. In Proceedings of the 1st Workshop on System Software
for Trusted Execution, page 5. ACM, 2016.

[42] D. Lee, D. Jung, I. T. Fang, C. che Tsai, and R. A. Popa. An off-chip
attack on hardware enclaves via the memory bus. In 29th USENIX
Security Symposium (USENIX Security 20), pages 487–504. USENIX
Association, Aug. 2020.

[43] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
fine-grained control flow inside SGX enclaves with branch shadowing.
In 26th USENIX Security Symposium, 2017.

[44] M. Li, Y. Zhang, and Z. Lin. Crossline: Breaking”security-
by-crash”based memory isolation in amd sev. arXiv preprint
arXiv:2008.00146, 2020.

[45] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected i/o
operations in amd’s secure encrypted virtualization. In 28th USENIX
Security Symposium, pages 1257–1272, 2019.

[46] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng. CIPHERLEAKS:
Breaking constant-time cryptography on AMD SEV via the ciphertext
side channel. In 30th USENIX Security Symposium, pages 717–732.
USENIX Association, Aug. 2021.

[47] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng. TLB Poisoning Attacks
on AMD Secure Encrypted Virtualization. In Annual Computer Security
Applications Conference, 2021.

[48] X. Liu, Z. Guo, J. Ma, and Y. Song. A secure authentication scheme
for wireless sensor networks based on dac and intel sgx. IEEE Internet
of Things Journal, pages 1–1, 2021.

[49] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. SEVered: Subverting
AMD’s virtual machine encryption. In 11th European Workshop on
Systems Security. ACM, 2018.

[50] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine learning
on trusted processors. In 25th USENIX Security Symposium (USENIX
Security 16), pages 619–636, Austin, TX, 2016. USENIX Association.

[51] Open enclave: Globals. https://openenclave.github.io/openenclave/api/
globals.html. (Accessed on 09/05/2019).

[52] Open portable trusted execution environment (op-tee). https://www.op
-tee.org/. Accessed Sept. 22, 2019.

[53] J. Park, S. Park, B. B. Kang, and K. Kim. eMotion: An SGX extension
for migrating enclaves. Computers & Security, 80:173–185, 2019.

[54] S. Park, A. Ahmad, and B. Lee. Blackmirror: Preventing wallhacks in 3d
online fps games. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 987–1000, 2020.

[55] M. Portnoy. Virtualization essentials, volume 19. John Wiley & Sons,
2012.

[56] F. Rodrı́guez-Haro, F. Freitag, L. Navarro, E. Hernánchez-sánchez,
N. Farı́as-Mendoza, J. A. Guerrero-Ibáñez, and A. González-Potes. A
summary of virtualization techniques. Procedia Technology, 3:267–272,
2012.

[57] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich. VC3: Trustworthy Data Analytics in the
Cloud using SGX. In 2015 IEEE Symposium on Security and Privacy,
pages 38–54. IEEE, 2015.

[58] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. Zombieload: Cross-privilege-boundary data
sampling. arXiv preprint arXiv:1905.05726, 2019.

[59] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks. Springer
International Publishing, 2017.

[60] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan. A practical encrypted
data analytic framework with trusted processors. In Proceedings of

the 24th ACM Conference on Computer and Communications Security
(CCS’17), Dallas, TX, November 2017.

[61] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page
faults from telling your secrets. In 11th ACM on Asia Conference on
Computer and Communications Security, 2016.

[62] C. Soriente, G. Karame, W. Li, and S. Fedorov. Replicatee: Enabling
seamless replication of sgx enclaves in the cloud. In 2019 IEEE
European Symposium on Security and Privacy, pages 158–171. IEEE,
2019.

[63] D. Tian, J. I. Choi, G. Hernandez, P. Traynor, and K. R. Butler.
A practical intel sgx setting for linux containers in the cloud. In
Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy, pages 255–266, 2019.

[64] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten. Switchless calls made practical in intel SGX. In
Proceedings of the 3rd Workshop on System Software for Trusted
Execution, pages 22–27, 2018.

[65] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith. Intel
virtualization technology. Computer, 38(5):48–56, 2005.

[66] A. Vallat and D. Schneuwly. Clock synchronization in telecommuni-
cations via PTP (IEEE 1588). In 2007 IEEE International Frequency
Control Symposium Joint with the 21st European Frequency and Time
Forum, pages 334–341. IEEE, 2007.

[67] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution. In 27th USENIX Security Symposium, pages 991–1008,
2018.

[68] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. RIDL: Rogue in-flight data load.
IEEE Symposium on Security and Privacy, 2019.

[69] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang,
T. Wei, and Z. Lin. Towards memory safe enclave programming with
rust-sgx. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[70] J. Werner, J. Mason, M. Antonakakis, M. Polychronakis, and F. Monrose.
The SEVerESt Of Them All: Inference Attacks Against Secure Virtual
Enclaves. In ACM Asia Conference on Computer and Communications
Security, pages 73–85. ACM, 2019.

[71] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth. Sevurity:
No security without integrity–breaking integrity-free memory encryption
with minimal assumptions. 2020.

[72] wolfSSL and wolfCrypt Benchmarks — Embedded SSL/TLS library.
https://www.wolfssl.com/docs/benchmarks/. Accessed Dec. 2, 2020.

[73] wolfSSL Embedded SSL/TLS Library — Now Supporting TLS 1.3.
https://www.wolfssl.com. Accessed Dec. 2, 2020.

[74] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In IEEE Symposium
on Security and Privacy. IEEE, 2015.

[75] W. Zhao, K. Lu, Y. Qi, and S. Qi. Mptee: bringing flexible and efficient
memory protection to intel sgx. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–15, 2020.

16

https://openenclave.github.io/openenclave/api/globals.html
https://openenclave.github.io/openenclave/api/globals.html
 https://www.op-tee.org/
 https://www.op-tee.org/
 https://www.wolfssl.com/docs/benchmarks/
 https://www.wolfssl.com

	Introduction
	Background
	Intel SGX
	AMD SEV and Extensions
	TEE Security
	Virtualization

	System Overview
	Design Goals
	Key Approach
	Challenges
	Threat Model

	Detailed Design
	Instruction Emulation
	Enclave Manager
	Memory Management
	Cross-VM Communication
	Properties of Cross-VM Communication
	Cross-VM Communication Protocol

	Remote Attestation
	Launching EVM with SEV Attestation
	vSGX Remote Attestation

	Security Analysis
	Execution Security
	Memory Encryption and Isolation
	Cross-VM Communication
	Discussion on TCB Size

	Evaluation
	Benckmarks
	Microbenchmarks
	Macrobenchmarks

	Real World SGX Application

	Limitations and Future Work
	Related Works
	Conclusion
	References

